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Società Italiana di Fisica
Springer-Verlag 2002

Effect of strain-induced electronic topological transitions
on the superconducting properties of La2−xSrxCuO4 thin films

G.G.N. Angilella1, G. Balestrino2,5, P. Cermelli3, P. Podio-Guidugli4, and A.A. Varlamov5
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Abstract. We propose a Ginzburg-Landau phenomenological model for the dependence of the critical
temperature on microscopic strain in tetragonal high-Tc cuprates. Such a model is in agreement with the
experimental results for LSCO under epitaxial strain, as well as with the hydrostatic pressure dependence
of Tc in most cuprates. In particular, a nonmonotonic dependence of Tc on hydrostatic pressure, as well
as on in-plane or apical microstrain, is derived. From a microscopic point of view, such results can be
understood as due to the proximity to an electronic topological transition (ETT). In the case of LSCO, we
argue that such an ETT can be driven by a strain-induced modification of the band structure, at constant
hole content, at variance with a doping-induced ETT, as is usually assumed.

PACS. 74.62.Fj Pressure effects – 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.)
– 74.72.Dn La-based cuprates

1 Introduction

The application of high pressure to high-Tc cuprate super-
conductors (HTS) is known to modify remarkably the su-
perconducting properties of these materials [1]. In partic-
ular, it was shown by Gao et al. [2] that quasi-hydrostatic
pressure can increase the critical temperature of HgBa2-
Ca2Cu3O8+δ up to about 164 K. Such a record has been
very recently challenged, by achieving Tc = 117 K in
C60 single crystals, where an expansion of the crystalline
lattice was realized via the intercalation of CHCl3 and
CHBr3 (chemical pressure) [3]. Even more promising is
the possibility of increasing Tc in HTS thin films via the
anisotropic strain induced by epitaxial growth on mis-
matching substrates. The effect of tensile and compressive
epitaxial strains on the transport properties has been in-
vestigated. This research has been mostly focused on the
La2−xSrxCuO4 (LSCO) compound because in this sys-
tem the hole concentration is well controlled over an ex-
ceptionally wide range, and mostly determined by the Sr
content (together with small oxygen non-stoichiometry).
Using SrLaAlO4 (SLAO) substrates (with in-plane lat-
tice spacing a = 3.755 Å), epitaxial LSCO films (a =
3.777 Å) have been grown which were in-plane compres-
sively strained [4]. Critical temperatures as high as 49 K

have been obtained in slightly underdoped La2−xSrxCuO4

with x = 0.11 [5], and Tc = 44 K in the same compound,
at optimal doping (x = 0.15) [6]. Recently, it has been
shown that a compressive epitaxial strain can induce an
insulator-superconductor transition in undoped or slightly
doped La2CuO4 films [7]. Such an epitaxial-strain-induced
transition is a further dramatic demonstration of the sig-
nificance of strain in HTS materials.

Different mechanisms have been proposed to explain
the dependence of Tc on lattice strain [8–10]. A simple ex-
planation is based on the possible dependence on strain
of the oxygen excess in the LSCO structure. However, it
has been shown in reference [11] that this cannot be the
only explanation. There is now a general agreement that
a key to understanding the relationship between epitaxial
strain and superconducting properties is the microstrain
associated to certain parameters describing the fine struc-
ture of the LSCO cell. Locquet et al. [5] have recently
suggested that the most relevant microparameter is the
distance between the Cu ions in the CuO2 planes and the
apical oxygen.

A phenomenological model accounting for the role of
the apical distance has been developed in reference [12];
this model, which accounts also for other microparame-
ters, is based on a Ginzburg-Landau approach. Needless
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to say, no phenomenological model could by itself clarify
the physical mechanism connecting microstrains and su-
perconducting properties. Yet, in our opinion, a result of
reference [12] offers a clue for a possible explanation: we
refer to the prediction, compatible with the available ex-
perimental data for LSCO, that the critical temperature is
a nonlinear function of the epitaxial strain εepi in the ex-
perimentally accessible range −0.006 ≤ εepi ≤ 0.006. This
prediction is directly reminiscent, for reasons that we now
detail, of a general prediction of the theory of electronic
topological transitions (ETT) [13–15].

The effect of an ETT on the superconducting prop-
erties of quasi-2D systems, such as HTS materials, has
attracted renewed interest [16,17]. It is known that
optimally-doped HTS materials are in the proximity of
an ETT from a hole-like to an electron-like Fermi surface;
in the case of LSCO, angle-resolved photoemission spec-
troscopy (ARPES) has shown that such a transition oc-
curs for x ' 0.2 (slightly overdoped samples) [18]. Now, an
ETT can be driven, in addition to doping, by a number of
different external agents, such as impurity concentration,
hydrostatic pressure and, as we here surmise, anisotropic
strain. In reference [19,20], the dependence of the critical
temperature Tc on the parameter z measuring the devia-
tion of the chemical potential from the ETT was studied,
and found to be nonmonotonic. In this paper, we pro-
pose that the physical mechanism at the origin of the
change in the critical temperature in LSCO films under
epitaxial strain is an ETT, driven by microstructural de-
formations. Furthermore, we show that the nonmonotonic
behavior, predicted in the ETT scenario, is in agreement
with the behavior foreseen by the phenomenological model
of reference [12].

The outline of the paper is as follows. After a brief
review of the Ginzburg-Landau phenomenological model
of reference [12], relating Tc to the epitaxial strain εepi

(Sect. 2), we introduce a generic microscopic model for a
superconducting electron system on a square lattice, close
to an ETT (Sect. 3). Our numerical results are presented
in Section 4, where a nonmonotonic dependence for Tc

as a function of hole doping and band structure is recog-
nized, in agreement with the phenomenological model of
Section 2. Conclusions and directions for future work are
the subject of Section 5.

2 Phenomenological model

Experimental data show that, in high-Tc materials such
as YBCO and LSCO, the critical temperature has a
parabolic dependence on applied hydrostatic pressure: as
pressure increases, so does Tc until it reaches a maximum,
after which it decreases [1]. Different trends have also
been recorded (notably, in orthorhombic YBCO) for Tc

as a function of uniaxial strain [21,22]. These have been
interpreted as evidence for the importance of the inter-
nal strains, especially in non-tetragonal compounds [23].
Moreover, the role of oxygen relaxation processes in estab-
lishing hysteresis loops in the pressure-temperature his-
tory of YBCO has been emphasized [24]. On the other

hand, such subtleties in the pressure dependence of Tc can
be neglected in tetragonal LSCO [25], whose hole content
is mainly determined by the amount of doping Sr. There-
fore, LSCO in the tetragonal phase is an ideal candidate to
study the dependence of Tc on applied pressure, without
(much of) the complication arising from pressure-induced
charge rearrangements.

Here, we show that a nonmonotonic dependence of Tc

on applied pressure is predicted by a modified Ginzburg-
Landau model, which takes into account the dependence
of Tc on the lengths of the apical and planar Cu–O bonds.
This model has been first introduced for application to
LSCO films under epitaxial strain [12]. Remarkably, the
predicted behavior of these films is similar: for an increas-
ing, compressive epitaxial strain, the critical temperature
rises to a maximum, then it decreases.

Tetragonal LSCO has a perovskite lattice structure,
with the Cu atoms in octahedral coordination with the O
atoms. We denote by (Cu–O)a and (Cu–O)b the Cu–O dis-
tances in the ab plane (viz., the half-diagonals of the Cu–O
octahedron in that atomic plane), and by (Cu–O)api the
apical distance (viz., the half-diagonal of the Cu–O octa-
hedron in the direction of the c axis). We also introduce
the microscopic strain measures

pa :=
(Cu–O)a − (Cu–O)a0

(Cu–O)a0
, (1a)

pb :=
(Cu–O)b − (Cu–O)b0

(Cu–O)b0
, (1b)

papi :=
(Cu–O)api − (Cu–O)api

0

(Cu–O)api
0

, (1c)

where (Cu–O)a0, (Cu–O)b0, and (Cu–O)api
0 are reference

values for the corresponding interatomic distances. We let
ε denote the macroscopic strain tensor, with components
εaa, εbb, etc.: ε measures the overall strain of the unit cell,
whereas the microscopic strains measure relative changes
in the interatomic distances within the cell.

For ϕ the superelectron density, we write the
Ginzburg-Landau free energy as

G = G0(T, ε) + a0α(T, pa, pb, papi)ϕ2 + b0ϕ
4, (2)

where a0, b0 > 0 are constants, and the function α ac-
counts for the dependence of the critical temperature
on the Cu–O distances. To fix the ideas, we assume a
quadratic dependence, in the form

α(T, pa, pb, papi) = T − T 0
c − λ1(pa + pb)− µ1(p2

a + p2
b)

−λ2papi−µ2p
2
api−σ(pa+pb)papi. (3)

As is well known, the vanishing of α determines the critical
temperature:

Tc = T 0
c + λ1(pa + pb) + µ1(p2

a + p2
b)

+λ2papi + µ2p
2
api + σ(pa + pb)papi. (4)

We estimate the phenomenological coefficients λi, µi and
σ from the available experimental data for LSCO under
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Table 1. Calculated coefficients (in K) for the dependence
of Tc on the changes of dimensions of the CuO octahedron,
equation (4).

λi × 10−3 µi × 10−3 σ × 10−3

i = 1 3.962 −579.664 5

i = 2 5.028 −42.029 −

strain. Our procedure consists of two steps: (i) we de-
termine how the microstrains (pa, pb, papi) depend on the
macroscopic strain ε; (ii) we express the critical temper-
ature in equation (4) as a function of the strain ε and
fit the resulting expression to the available data on strain
and Tc.

Step (i) has been performed in reference [12], on the
basis of the experimental findings of Locquet et al. [26]
for the variation of the interatomic distances in epitaxi-
ally strained thin films of LSCO. In the tetragonal phase,
it is reasonable to assume that pa = εaa, pb = εbb, but
the experimental data in reference [26] show that papi

is a highly nonlinear function of the principal strains
(εaa, εbb, εcc). The actual analytical expression for papi =
p̃api(εaa, εbb, εcc), interpolating the data in reference [26],
has been determined in reference [12].

Step (ii) corresponds to substituting into equation (4)
the expressions for (pa, pb, papi) in terms of (εaa, εbb, εcc).
The result is an expression of the form

Tc = T̃c(εaa, εbb, εcc)
= T 0

c + λ1(εaa + εbb) + µ1(ε2
aa + ε2

bb)
+λ2p̃api(εaa, εbb, εcc) + µ2p̃

2
api(εaa, εbb, εcc)

+σ(εaa + εbb)p̃api(εaa, εbb, εcc), (5)

which still contains the unknown coefficients λi, µi, and σ.
These parameters may be determined by fitting the ex-
pression (5) to the experimental data on the dependence
of the critical temperature under strain [12]. Using the
data in references [5,21,26,22,27], we obtain the values
listed in Table 1.

Remark 1 At first order in (pa, pb, papi), only the linear
terms are important, and the expression (4) reduces to

Tc ∼ T 0
c + [4(pa + pb) + 5papi]× 103, (6)

which shows that the critical temperature increases with
the size of the Cu–O octahedron, and is nearly isotropic
in the horizontal and vertical microstrains.

Remark 2 More importantly, for papi fixed, the critical
temperature reaches a maximum in correspondence of a
given horizontal microstrain pa = pb = pmax

a , and then
it starts decreasing (Fig. 1). A completely analogous be-
havior takes place for pa and pb fixed: the critical temper-
ature reaches a maximum at a given apical microstrain
papi = pmax

api (Fig. 2).
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Fig. 1. Theoretical variation of the critical temperature Tc−T 0
c

(in K) on the planar microstrain pa, for two fixed values of the
apical microstrain, papi = 0 (solid line), and papi = 0.1 (dotted
line), according to equation (4).
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Fig. 2. Theoretical variation of the critical temperature Tc−T 0
c

(in K) on the apical microstrain papi, for two fixed values of the
planar microstrain, pa = 0 (solid line), and pa = 0.01 (dotted
line), according to equation (4).

Remark 3 Under epitaxial strain, εaa = εbb = εepi, and
εcc = −2(c13/c33)εepi (c13 and c33 are components of the
constant elasticity tensor of the film [12]), so that the crit-
ical temperature in (5) is a function of the epitaxial strain
εepi only. This function is plotted in Figure 3. Note that Tc

is monotonically decreasing in the experimentally acces-
sible range −0.006 ≤ εepi ≤ 0.006, but shows a sharp
maximum just below the lower bound of this interval:
the predicted values of the maximum Tc are not very
far from the experimentally accessible interval, where the
quadratic approximation in (4) may still be expected to
hold. Thus, the prediction of the phenomenological model
seems reasonable.
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Fig. 3. Theoretical variation of the critical temperature Tc−T 0
c

(in K) on the epitaxial strain, according to equation (5).

Remark 4 Under an applied hydrostatic pressure P , we
have

εaa = εbb =
(−c33 + c13)P

c11c33 − 2c213 + c12c33
, (7a)

εcc = − (c11 − 2c13 + c12)P
c11c33 − 2c213 + c12c33

, (7b)

and the remaining strain components vanish. The criti-
cal temperature in (5) becomes a function of the applied
pressure. This function is plotted in Figure 4, which dis-
plays the characteristic maximum of Tc versus pressure,
as observed experimentally [1]. Note that the numerical
agreement with experimental data in this case is poorer
than for epitaxial strain.

Remark 5 For small strains, an approximate phenomeno-
logical expression for Tc as a function of the applied strain,
widely used in the literature, is

Tc = T 0
c +A(εaa + εbb) +Bεcc, (8)

where, for LSCO, A = −284 K and B = 851 K (notably,
A < 0, B > 0). The latter expression may be viewed as
a linear approximation to (5), with A = ∂Tc

∂εaa

∣∣∣
0

= ∂Tc
∂εbb

∣∣∣
0
,

and B = ∂Tc
∂εcc

∣∣∣
0
.

Therefore, the critical temperature is a decreasing
function of the horizontal macroscopic strain, which seems
to be in contradiction with the fact that, in equation (4),
Tc is an increasing function of the horizontal microstrains
pa and pb (recall in fact that pa = εaa, pb = εbb). This may
be explained by noting that the apical microstrain papi

is a very fast decreasing function of the horizontal strain
(εaa, εbb) [12], and it prevails quantitatively in equation (4)
over the horizontal microstrains. Thus, according to equa-
tion (4), the observed decrease of the critical temperature
under uniaxial horizontal strain (as measured by the neg-
ative A) seems to be essentially due to the accompanying
decrease of the apical distance.
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Fig. 4. Theoretical variation of the critical temperature
Tc − T 0

c (in K) on applied hydrostatic pressure, according to
equation (5).

3 Microscopic model

We start by considering the following Hubbard-like Hamil-
tonian for an interacting electron system on a 2D square
lattice [28]

H =
∑
kσ

ξkc
†
kσckσ +

1
N

∑
kk′

Vkk′c
†
k↑c
†
−k↓c−k′↓ck′↑. (9)

Here, c†kσ (ckσ) is a creation (annihilation) operator for
an electron state with wavevector k and spin projection
σ ∈ {↑, ↓}, N is the number of lattice sites, and the sums
are restricted to the first Brillouin zone (1BZ). We as-
sume the electron-electron interaction in the separable
form Vkk′ = λgkgk′ , where gk = 1

2 (cos kx − cos ky) is the
lowest-order d-wave lattice harmonic for a square lattice,
and λ a phenomenological coupling constant (λ < 0).

Detailed band structure calculations [29] as well as
ARPES [30] suggest that a tight-binding approximation
for the dispersion relation ξk of most high-Tc cuprates
should retain at least nearest (NN, t) and next-nearest
neighbors (NNN, t′) hopping. We then assume the follow-
ing rigid band-dispersion relation for LSCO:

ξk = −2t(coskx + cos ky) + 4t′ cos kx cos ky − µ, (10)

where µ denotes the chemical potential, and the compo-
nents of the wavevector k are measured in units of the
inverse lattice spacing. In order to have a flat minimum
in ξk around the Γ point, as observed experimentally [30],
the condition 0 < r < 1

2 must be fulfilled. A nonzero value
of the hopping ratio r = t′/t destroys perfect nesting at
µ = 0 as well as the electron-hole symmetry, and is known
to stabilize superconductivity against other possible low-
energy instabilities [31].

As the chemical potential µ in equation (10) varies
from the bottom, ε⊥ = −4t(1 − r), to the top of the
band, ε> = 4t(1 + r), the Fermi line ξk = 0 evolves from



G.G.N. Angilella et al.: Train-induced ETT in LSCO thin films 71

an electron-like contour, closed around the Γ point, to a
hole-like contour, whose continuation into higher Brillouin
zones closes around the M = (π, π) point (see also Fig. 7
below). In doing so, an ETT is traversed at µ = εc = −4t′,
where the Fermi line touches the zone boundaries.

It is worth emphasizing that the assumed d-wave mo-
mentum dependence of the potential energy correlates in
a nontrivial way with the behaviour of the Fermi line close
to the ETT. Indeed, the above choice for the pairing po-
tential yields a gap energy ∆k ∝ gk, with maximum am-
plitudes occurring at X = (0, π) (and symmetry related
points), i.e. exactly at the ETT. Moreover, this is where
the shape of the Fermi line is most sensible to changes in
the hopping ratio r [32]. Therefore, a deformation of the
Fermi line induces a change of the phase space effectively
probed by the electron-electron interaction [33]. This is
particularly relevant in the case of anisotropic pairing with
d-wave symmetry, such as that mediated by the exchange
of antiferromagnetic spin density wave [34] or charge den-
sity wave fluctuations [35], as well as in the case of d-wave
pairing enhanced by interlayer pair-tunneling [36,37].

An ETT gives rise to anomalous behaviors in the nor-
mal as well as in the superconducting properties of the
electron system, as a function of the distance z = µ − εc
from the ETT [13–15]. At variance with the 3D case, a
2D superconductor close to an ETT is characterized by
a nonmonotonic dependence of Tc on z, as observed ex-
perimentally as a function of doping [38], or hydrostatic
pressure [1]. Such a result has been recently rederived an-
alytically [19,20]. Moreover, one finds that Tc at optimal
doping (i.e., near the ETT) correlates directly with the
hopping ratio r, both for an s- and for a d-wave super-
conductor [19,20], as is exctracted from band structure
calculations for several hole-doped high-Tc cuprates [39].

The effects of the proximity to an ETT in the normal
state are more difficult to be detected. For example, it is
well known that the presence of an ETT at T = 0 gives
rise to a peak in the thermoelectric power of a metal as
well as to minima in the voltage-current characteristic of
a tunnel junction [13]. However, the increase of tempera-
ture is expected to smear such effects. On the other hand,
the sign change of the Hall resistivity RH in the cuprates
as a function of doping [40] (see also Ref. [41] for mea-
surements of RH in LSCO thin films) has been related
to the presence of a Van Hove singularity in the single-
particle spectrum of LSCO [42] (see also Ref. [15] for a
review). Indeed, it has been shown that the sign of the
Hall conductivity correlates with ∂ lnTc/∂ lnµ [43], which
in particular implies a sign change at optimal doping, i.e.
near the ETT.

In order to understand the nonmonotonic dependence
of the critical temperature Tc as a function of lattice
strain, we argue that a strain-induced deformation of the
lattice varies the parameters in equation (10), so that Tc

attains its optimal value close to the ETT. To this aim,
one has to recognize that applied pressure (hydrostatic
pressure or anisotropic stress) can in principle modify all
the parameters in the model, so that several contributions
to the overall pressure dependence of Tc can be identi-

fied [44]. In particular, pressure is expected to modify the
overall hole doping level δ. Moreover, an intrinsic source
of variation for Tc is expected to come from the depen-
dence of the hopping parameters as well as of the coupling
constant on the lattice spacings. In reference [44], a phe-
nomenological dependence of the hopping parameters as
well as the coupling constant on hydrostatic pressure has
been assumed [44]. Here, we restrict to the case δ = const.,
and argue that the main parameter driving the deforma-
tion of the Fermi line in the case of in-plane epitaxial strain
be the hopping ratio r.

4 Numerical results and discussion

A standard mean-field approximation of equation (9)
yields the BCS gap equation [28,44]:

∆k = − 1
N

∑
k′

Vkk′χk′∆k′ , (11)

where ∆k ≡ ∆gk is the gap energy, χk =
(2Ek)−1 tanh(1

2βEk) the pair susceptibility, Ek =√
ξ2
k +∆2

k the upper branch of the superconducting ex-
citation spectrum, and β = (kBT )−1 the inverse tempera-
ture. Equation (11) must be supplemented by the equation
defining the band filling n, or equivalently the hole doping
δ = 1− n,

n = 1− 2
∑
k

ξkχk. (12)

At T = Tc, ∆ → 0, and equation (11) can be lin-
earized as

1 + λ
1
N

∑
k

g2
kχ

c
k = 0, (13)

where χc
k = (2ξk)−1 tanh(βcξk/2). Equations (13) and

(12) can be solved self-consistently for the critical tem-
perature Tc and the chemical potential µ, at fixed hole
content δ, for a given hopping ratio r.

Figures 5 and 6 show our numerical results for Tc as
a function of δ, for fixed values of the hopping ratio r in
the meaningful range 0 ÷ 0.5, and for Tc as a function
of r, for fixed hole content δ, respectively (t = 0.4 eV,
λ = −0.45 eV, yielding an optimal Tc ≈ 40 K at δ ≈ 0.15
for r ≈ 0.2, as observed experimentally in LSCO).

In Figure 5, each curve corresponds to a given band
dispersion relation, equation (10), fixed by a constant
value of the hopping ratio r. The topology of the Fermi line
ξk = 0 evolves from a hole-like to an electron-like contour
as δ increases (µ decreases), as depicted in Figure 7 (left).
Here, the ETT is driven by a variation of the hole con-
tent δ, which in turn implies a change in chemical poten-
tial µ, through equation (12). For a given band structure
(r = const.), one recognizes the typical bell-shaped depen-
dence of Tc on doping, as observed experimentally [1,38].
A maximum in Tc is found close, though not exactly at,
the ETT [19,20].
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Fig. 5. Critical temperature Tc as a function of hole doping
δ, equation (12), for fixed hopping ratio r = t′/t = 0 ÷ 0.5
(t = 0.4 eV, λ = −0.45 eV). Along each curve, one recovers
the typical bell-shaped dependence of Tc on δ, the maximum
occurring close to the ETT. The thicker line corresponds to
r = 0.182, for which Tc attains a maximum of ≈40 K for δ ≈
0.15, as observed experimentally for LSCO.
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Fig. 6. Critical temperature Tc as a function of hopping ratio
r = t′/t (other parameters as in Figure 5). Along each curve,
δ = const (δ = 0.05 ÷ 0.3, as in Figure 5; the thicker line
corresponds to δ = 0.125). One recognizes a nonmonotonic
dependence of Tc on strain, as observed experimentally, the
maximum in Tc being attained close to the ETT. One also
recovers the direct correlation between Tmax

c on each curve
and the hopping ratio r (dashed line, vertically shifted, for
clarity) [19,20,39].

On the other hand, epitaxial strain in thin films may
realize the conditions assumed in Figure 6, viz. a modi-
fication of the lattice spacings induce a variation of the
hopping parameters in equation (10), and therefore in the
hopping ratio r. Here, we assume that we can neglect
the strain dependence of the NN hopping parameter t,
mainly fixing the scale for Tc, compared to that of the
NNN hopping parameter t′, whose value determines the
actual shape of the Fermi line at the ETT. Indeed, within
the extended Hückel theory [45], the hopping parameters

Γ X

M

Γ X

M

Fig. 7. Typical Fermi lines ξk = 0, equation (10), at either
side of an ETT. Left: The ETT is driven by a variation of
the hole content δ, at constant r (r = 0.182, corresponding
to the thicker plot in Fig. 5). Right: The ETT is driven by a
(strain-induced) variation of the hopping ratio r, at constant δ
(δ = 0.125, thicker plot in Fig. 6). In both cases, the Fermi line
changes topology, from a hole-like contour, centered around the
M = (π, π) point, to an electron-like contour, centered around
the Γ point.

t and t′ can be roughly approximated by the overlap in-
tegrals between NN Cu 3dx2−y2 and O 2px orbitals, and
NNN O 2px and O 2py orbitals, respectively (see Fig. 1
in Ref. [39]). Due to the weaker overlap of the latter two
orbitals, it is to be expected that for moderate strain t′

increases much faster than t as the CuO2 unit cell is com-
pressed, provided that the tetragonal symmetry of the lat-
tice is preserved [44]. We can also neglect the strain de-
pendence of the hole content δ, which in the case of LSCO
close to optimal doping is known to be weakly dependent
on hydrostatic pressure [46]. On the other hand, our main
conclusions should not be affected by a strain-dependent
coupling constant λ (see, however, reference [44]).

Figure 6 displays our numerical results for Tc as a func-
tion of the hopping ratio r = t′/t. Each curve corresponds
to a constant value of the hole doping δ. Assuming an ap-
proximately linear dependence of the hopping ratio r on
the in-plain microscopic strain εaa = εbb, and neglecting
the strain dependence of all other parameters, one recovers
a nonmonotonic dependence of Tc on strain, as observed
experimentally, in agreement with the phenomenological
model of Section 2. In particular, the maximum in Tc is
attained close to the ETT. At variance with the case con-
sidered in Figure 5, the topology change of the Fermi line
at fixed hole doping is here driven by a strain-induced
variation of the band parameters (Fig. 7, right). One also
recovers the direct correlation between the critical tem-
perature at optimal doping for each curve, Tmax

c , and the
hopping ratio r (Fig. 6, dashed line), as analytically found
in reference [19,20], and observed experimentally for many
high-Tc cuprates [39].

5 Conclusions

Within a Ginzburg-Landau approach, we have proposed
a phenomenological model for the critical temperature
Tc as a function of microscopic strain ε in a tetragonal
cuprate superconductor. For small strains, the model pre-
dicts an increase of Tc when the size of the CuO octahe-
dron increases. Such a behavior is rather generic to high-Tc



G.G.N. Angilella et al.: Train-induced ETT in LSCO thin films 73

superconductors, as has been very recently confirmed by
the observed increase of Tc up to 117 K in lattice-expanded
doped fullerites [3].

On the other hand, for fixed in-plane or apical strains,
Tc displays a nonmonotonic behavior on either apical or
in-plain microstrains, respectively. Such a behavior is re-
covered also for the dependence of Tc on hydrostatic pres-
sure P , in agreement with the Tc vs. P plots of most
cuprate compounds [1]. Moreover, under epitaxial strain,
we find a monotonically decreasing Tc in the experimen-
tally accessible range −0.006 ≤ εepi ≤ 0.006, with a
sharp maximum just below the lower bound of the men-
tioned range, in good qualitative and quantitative agree-
ment with the experimental results for epitaxially strained
LSCO [5,26].

From a microscopic point of view, a nonmonotonic
strain dependence of the critical temperature in the high-
Tc cuprates has been interpreted as due to the proximity
to an electronic topological transition (ETT). The quasi-
2D band structure generic to cuprates implies a topology
change of the Fermi line ξk = 0, evolving from a hole-
like to an electron-like contour in the 1BZ. A variation
(in the most general sense of variational calculus) of the
band-dispersion ξk induces a change in various observable
properties, such as Tc (thus, a functional of ξk), with a
maximum occurring at, or close to, the ETT.

Assuming a tight-binding parametrization of the band
structure, one way to ‘vary’ ξk is that of changing the hole
content. Physically, this is what is most commonly real-
ized by doping in the experiments, and what has been usu-
ally considered in the theoretical literature [16,17]. Such a
situation corresponds to the assumption of a rigid band,
namely an electronic band whose structure does not de-
pend on its filling.

Here, we considered another class of ‘variations’ of ξk,
i.e. a change in the band parameters, at fixed hole con-
tent. A modification of the in-plane band parameters can
be induced by in-plane epitaxial strain, through a change
in the lattice spacings, without perturbing the tetragonal
symmetry of the lattice. The idea of an ETT driven by a
modification of the band structure, at fixed hole content,
as contrasted to an ETT induced by doping or hydro-
static pressure for a rigid band, is particularly relevant for
LSCO, where the hole content is known to be practically
independent of pressure [46].

Thus, a numerical analysis of a minimal microscopic
model for d-wave superconductivity close to an ETT al-
lowed us to recover a nonmonotonic dependence of Tc on
the hopping ratio r, measuring the distortion of the elec-
tronic band under in-plane epitaxial strain. At constant
doping, a variation of r modifies the topology of the Fermi
line and drives an electronic topological transition, with
Tc attaining the maximum value close to the ETT. Such
a result enables us to justify, from a microscopic point of
view, the proposed phenomenological model for Tc as a
function of microstrain in the cuprates.
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